
Markov Networks 

l  Like Bayes Nets 
l  Graphical model that describes joint probability 

distribution using tables (AKA potentials) 
l  Nodes are random variables 
l  Labels are outcomes over the variables 



Markov Networks 

l  Unlike Bayes Nets 
l  Undirected graph 
l  No requirement that tables need not be are 

conditional distributions 
l  Table distributed over complete subgraph  



More on Potentials 
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•  Values are 
typically non-
negative 

•  Values need not 
be probabilities 

•  Generally, one 
table associated 
with each clique 



Calculating the Full Joint 
Probability Density 

One potential 

Feature vector  
(i.e.                  ) 

Normalization  
constant 

•  Full Joint Probability Density is the 
normalized product of the event 
probabilities 



Calculating the Normalization 
Constant Z 



Using 
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•  Get probability 
of A=1, B=0, 
C=1, D=0, E=0  

•  Only need 
potentials 

•  Multiply entries 
consistent with 
this setting  
 (3 x 3 = 9) 

 



Hammersley-Clifford Theorem 

If Distribution is strictly positive (P(x) > 0) 
And Graph encodes conditional independences 
Then Distribution is product of potentials over       

  cliques of graph 
 
Inverse is also true. 
(“Markov network = Gibbs distribution”) 



Markov Nets versus Bayes 
Nets 

•  Disadvantages of Markov Nets 
•  Computationally intensive to compute 

probability of any complete setting of variables 
with Markov Net (NP-hard), easy for Bayes 
Net 

•  Hard to learn Markov Net parameters in a 
straightforward way 
•  Can’t just use marginal frequencies from 

data as for Bayes nets 
•  Gradient ascent requires inference (hard) 



Markov Nets versus Bayes 
Nets 

•  Advantages of Markov Nets  
•  Easier to reason about conditional 

independence 
•  Markov nets are neighbors 
•  d-separation: conditional independence 

achieved iff all paths cut off by evidence 
•  No need to select an arbitrary, potentially 

misleading direction for a dependency in 
cases where the direction is unclear 



Markov Nets vs. Bayes Nets 
Property Markov Nets Bayes Nets 
Form Prod. potentials Prod. potentials 

Potentials Arbitrary Cond. probabilities 

Cycles Allowed Forbidden 

Partition func. Z = ? Z = 1 

Indep. check Graph separation D-separation 

Indep. props. Some Some 

Inference MCMC, BP, etc. Convert to Markov 



Constructing Markov Nets 

•  Just as in Bayes Nets, the decision of which 
tables to represent is based on background 
knowledge 

•  Although the model can be built from the data, it 
is often easier for people to leverage domain 
knowledge 

•  Although the model is undirected, it can still be 
helpful to think of directionality when constructing 
the Markov Net 

 



Scale Invariance 
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The change at the right will 
not effect the joint  
probability distribution. 



Inference 

•  Almost the same as in Bayes Nets (this is 
somewhat surprising considering all the other 
differences!) 

•  Possible approaches: 
•  Gibbs sampling 
•  Variable elimination 
•  Belief propagation 



Inference in Markov Networks 
l  Goal: Compute marginals & conditionals of 
 

l  Conditioning on Markov blanket of a 
proposition x is easy, because you only have 
to consider cliques (formulas) that involve x : 

l  Gibbs sampling exploits this 
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Markov Chain Monte Carlo 
l  General algorithm: Metropolis-Hastings 

l  Sample next state given current one according 
to transition probability 

l  Reject new state with some probability to 
maintain detailed balance 

l  Simplest (and most popular) algorithm: 
Gibbs sampling 
l  Sample one variable at a time given the rest 
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MCMC: Gibbs Sampling 

state ← random truth assignment 
for i ← 1 to num-samples do 
    for each variable x  
        sample x according to P(x|neighbors(x)) 
        state ← state with new value of x 
P(F) ← fraction of states in which F is true 



Learning: Recall the Bayes Net 
approach 

•  In Bayes Nets, we go through each variable one 
at a time, row by row in the CPT adjusting 
weights 

•  One way to think of this approach is that we look 
at the prior setting and ask what the probability of 
this setting is based on what we see in the data, 
then adjust the CPT to be consistent with the 
data 



Can we use this approach on 
Markov Nets? 

•  No! Consider changing a single table value. 
•  This changes the partition function, Z.  
•  Thus, a local change to one table effects other 

tables; local changes have global effects! 



Markov Net Learning 

•  We want to get the derivative of the maximum 
likelihood function. We can then incrementally 
move each weight in direction of the gradient 
based on a learning parameter η 

•  The above approach amounts to differencing the 
expectation of priors and observed occurrences, 
computed as on the next slide 



Markov Net Learning, 
continued  

•  Assume that the dataset is composed of M 
datapoints. Consider the task of computing the 
expectation of priors and observed occurrences 
for A ˄ B 
•  Expectation of priors: M·Pr(A ˄ B) 
•  Observed occurrences: Number of datapoints 

for which A and B hold 
•  Using this approach, it can be shown that 

gradient ascent converges 



Log Linear Models 

•  Equivalent to Markov 
Nets (though they 
look very different) 

•  Take the natural log 
of each parameter 
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Log Linear Models 

•  This change allows us to write the probability 
density function as:  

ln potential values 

exp(X) = eX
 

Logical statements, either 1 or 0 
Also known as indicator functions 
For example, 
f1 = a ˄ b 
f2 = ¬a ˄ b 
 



Weight Learning 

l  Maximize likelihood or posterior probability 
l  Numerical optimization (gradient or 2nd order)  
l  No local maxima 

l  Requires inference at each step (slow!) 

No. of times feature i is true in data 

Expected no. times feature i is true according to model 

[ ])()()(log xnExnxP
w iwiw
i

−=
∂

∂



Example: Ising Model 



Analyzing  

•  In this formulation, the w’s are just weights and 
the f’s are just features 

•  As such, we can throw the graph out if we want – 
we have everything we need in the wis and fis 

•  In this view, parameter learning is just weight 
learning 



Statistical Relational Learning 
(SRL)  

•  For the most part, up until now, we have 
assumed feature vectors as our data 
representation 

•  In many cases, a database model is more likely 
•  Limitations of ILP 

•  ILP that learned rules was somewhat robust 
to noise, but still used a closed world model 

•  There is little that is unconditionally true in the 
real world 

•  SRL addresses these limitations 



Markov Logic 

•  Allows one to make statements that are usually 
true 

•  Example: 

Attach weights to each rule. The probability of a 
setting  that violates a rule drops off 
exponentially with the weight of a rule 

weight 

0 



Markov Logic, continued 

•  All variables, need not be universally quantified, 
but we assume so for here to ease notation 

•  Rules are mapped into a Markov Network 
•  Syntactically we are dealing with predicate calculus 

(in our example, constants are people) 
•  Semantically, we are dealing with a joint probability 

distribution over all facts (ground atomic formulas) 
•  A world is a truth assignment: we have probabilities 

for each world based on weight 



Translating Markov Logic to a 
Markov Net 

•  Create ground instances through substitution 
•  Create a node for each fact 
•  Create an edge between nodes if both appear in 

a ground instance 



Example translated to Markov 
Network 

•  Facts: 

 

•  Rules: 
Friend(x,y) ∧ Smokes(x) -> 

  Smokes(y) 

friend(Joe,Mary)	


smokes(Mary)	
 smokes(Joe)	


friend(Mary,Joe)	


other facts,  
like  

cancer(Mary) 

other facts,  
like  

cancer(Joe) 



Computing weights 

•  Consider the effect of this rule, called ◊ for 
convenience:  

weight 
1.1 

smokes(Mary) ¬smokes(Mary) 

smokes(Joe) ¬smokes(Joe) 

¬friends(Mary,Joe) 

friends(Mary,Joe) 

smokes(Joe) ¬smokes(Joe) 

This is the only predicate that does not satisfy ◊ 
Thus, it is given value 1, while the others are  
Given value exp(weight(◊)) 

e1.1 e1.1 e1.1 e1.1 

e1.1 e1.1 e1.1 1 



Markov Networks 
l  Undirected graphical models 

Cancer 

Cough Asthma 

Smoking 

l  Potential functions defined over cliques 
Smoking Cancer   Ф(S,C) 

False False      4.5 

False True      4.5 

True False      2.7 

True True      4.5 
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Markov Networks 
l  Undirected graphical models 

l  Log-linear model: 

Weight of Feature i Feature i 
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Pseudo-Likelihood 

l  Likelihood of each variable given its 
neighbors in the data 

l  Does not require inference at each step 
l  Consistent estimator 
l  Widely used in vision, spatial statistics, etc. 
l  But PL parameters may not work well for 

long inference chains 
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Structure Learning 

l  Start with atomic features 
l  Greedily conjoin features to improve score 
l  Problem: Need to reestimate weights for 

each new candidate 
l  Approximation: Keep weights of previous 

features constant 
 



Generative Weight Learning 

l  Maximize likelihood or posterior probability 
l  Numerical optimization (gradient or 2nd order)  
l  No local maxima 

l  Requires inference at each step (slow!) 

No. of times feature i is true in data 

Expected no. times feature i is true according to model 
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Pseudo-Likelihood 

l  Likelihood of each variable given its 
neighbors in the data 

l  Does not require inference at each step 
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l  Widely used in vision, spatial statistics, etc. 
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Discriminative Weight Learning 

l  Maximize conditional likelihood of query (y) 
given evidence (x) 

l  Approximate expected counts by counts in 
MAP state of y given x	



No. of true groundings of clause i in data 

Expected no. true groundings according to model 
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Rule Induction 
l  Given: Set of positive and negative examples of 

some concept 
l  Example: (x1, x2, … , xn, y) 
l  y: concept (Boolean) 
l  x1, x2, … , xn: attributes (assume Boolean) 

l  Goal: Induce a set of rules that cover all positive 
examples and no negative ones 
l  Rule:  xa ^ xb ^ … -> y   (xa: Literal, i.e., xi or its negation) 
l  Same as Definite clause:  Body ⇒ Head 
l  Rule r covers example x iff x satisfies body of r 

l  Eval(r): Accuracy, info. gain, coverage, support, etc. 



Learning a Single Rule 

head ← y 
body ← Ø 
repeat 
    for each literal x 
        rx ← r with x added to body 
        Eval(rx) 
    body ← body ^ best x 
until no x improves Eval(r) 
return r 



Learning a Set of Rules 

R ← Ø 
S ← examples 
repeat 
    learn a single rule r 
     R ← R U { r } 
    S ← S − positive examples covered by r 
until S contains no positive examples 
return R 



First-Order Rule Induction 
l  y and xi are now predicates with arguments 

E.g.: y is Ancestor(x,y), xi is Parent(x,y) 
l  Literals to add are predicates or their negations 
l  Literal to add must include at least one variable 

already appearing in rule 
l  Adding a literal changes # groundings of rule 

E.g.: Ancestor(x,z) ^ Parent(z,y) -> Ancestor(x,y) 
l  Eval(r) must take this into account 

E.g.: Multiply by # positive groundings of rule 
         still covered after adding literal 


