
Markov Networks

l  Like Bayes Nets
l  Graphical model that describes joint probability

distribution using tables (AKA potentials)
l  Nodes are random variables
l  Labels are outcomes over the variables

Markov Networks

l  Unlike Bayes Nets
l  Undirected graph
l  No requirement that tables need not be are

conditional distributions
l  Table distributed over complete subgraph

More on Potentials

B	
 C	
D	

A	

E	

c ¬c

a

¬a

3

2

1

5

c ¬c

d

¬d

1

3

2

4

•  Values are
typically non-
negative

•  Values need not
be probabilities

•  Generally, one
table associated
with each clique

Calculating the Full Joint
Probability Density

One potential

Feature vector
(i.e.)

Normalization
constant

•  Full Joint Probability Density is the
normalized product of the event
probabilities

Calculating the Normalization
Constant Z

Using

B	
 C	
D	

A	

E	

c ¬c

a

¬a

3

2

1

5

c ¬c

d

¬d

1

3

2

4

•  Get probability
of A=1, B=0,
C=1, D=0, E=0

•  Only need
potentials

•  Multiply entries
consistent with
this setting
 (3 x 3 = 9)

Hammersley-Clifford Theorem

If Distribution is strictly positive (P(x) > 0)
And Graph encodes conditional independences
Then Distribution is product of potentials over

 cliques of graph

Inverse is also true.
(“Markov network = Gibbs distribution”)

Markov Nets versus Bayes
Nets

•  Disadvantages of Markov Nets
•  Computationally intensive to compute

probability of any complete setting of variables
with Markov Net (NP-hard), easy for Bayes
Net

•  Hard to learn Markov Net parameters in a
straightforward way
•  Can’t just use marginal frequencies from

data as for Bayes nets
•  Gradient ascent requires inference (hard)

Markov Nets versus Bayes
Nets

•  Advantages of Markov Nets
•  Easier to reason about conditional

independence
•  Markov nets are neighbors
•  d-separation: conditional independence

achieved iff all paths cut off by evidence
•  No need to select an arbitrary, potentially

misleading direction for a dependency in
cases where the direction is unclear

Markov Nets vs. Bayes Nets
Property Markov Nets Bayes Nets
Form Prod. potentials Prod. potentials

Potentials Arbitrary Cond. probabilities

Cycles Allowed Forbidden

Partition func. Z = ? Z = 1

Indep. check Graph separation D-separation

Indep. props. Some Some

Inference MCMC, BP, etc. Convert to Markov

Constructing Markov Nets

•  Just as in Bayes Nets, the decision of which
tables to represent is based on background
knowledge

•  Although the model can be built from the data, it
is often easier for people to leverage domain
knowledge

•  Although the model is undirected, it can still be
helpful to think of directionality when constructing
the Markov Net

Scale Invariance

B	
 C	
D	

A	

E	

c ¬c

a

¬a

3

2

1

5

c ¬c

d

¬d

1

3

2

4

c ¬c

d

¬d

10

30

20

40

The change at the right will
not effect the joint
probability distribution.

Inference

•  Almost the same as in Bayes Nets (this is
somewhat surprising considering all the other
differences!)

•  Possible approaches:
•  Gibbs sampling
•  Variable elimination
•  Belief propagation

Inference in Markov Networks
l  Goal: Compute marginals & conditionals of

l  Conditioning on Markov blanket of a
proposition x is easy, because you only have
to consider cliques (formulas) that involve x :

l  Gibbs sampling exploits this

()
() ()

exp ()
(| ())

exp (0) exp (1)
i ii

i i i ii i

w f x
P x MB x

w f x w f x
=

= + =

∑
∑ ∑

1() exp ()i i
i

P X w f X
Z

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ exp ()i i

X i
Z w f X⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑

Markov Chain Monte Carlo
l  General algorithm: Metropolis-Hastings

l  Sample next state given current one according
to transition probability

l  Reject new state with some probability to
maintain detailed balance

l  Simplest (and most popular) algorithm:
Gibbs sampling
l  Sample one variable at a time given the rest

()
() ()

exp ()
(| ())

exp (0) exp (1)
i ii

i i i ii i

w f x
P x MB x

w f x w f x
=

= + =

∑
∑ ∑

MCMC: Gibbs Sampling

state ← random truth assignment
for i ← 1 to num-samples do
 for each variable x
 sample x according to P(x|neighbors(x))
 state ← state with new value of x
P(F) ← fraction of states in which F is true

Learning: Recall the Bayes Net
approach

•  In Bayes Nets, we go through each variable one
at a time, row by row in the CPT adjusting
weights

•  One way to think of this approach is that we look
at the prior setting and ask what the probability of
this setting is based on what we see in the data,
then adjust the CPT to be consistent with the
data

Can we use this approach on
Markov Nets?

•  No! Consider changing a single table value.
•  This changes the partition function, Z.
•  Thus, a local change to one table effects other

tables; local changes have global effects!

Markov Net Learning

•  We want to get the derivative of the maximum
likelihood function. We can then incrementally
move each weight in direction of the gradient
based on a learning parameter η

•  The above approach amounts to differencing the
expectation of priors and observed occurrences,
computed as on the next slide

Markov Net Learning,
continued

•  Assume that the dataset is composed of M
datapoints. Consider the task of computing the
expectation of priors and observed occurrences
for A ˄ B
•  Expectation of priors: M·Pr(A ˄ B)
•  Observed occurrences: Number of datapoints

for which A and B hold
•  Using this approach, it can be shown that

gradient ascent converges

Log Linear Models

•  Equivalent to Markov
Nets (though they
look very different)

•  Take the natural log
of each parameter

B	
 C	
D	

A	

E	

a ¬a

b

¬b

ln p1

ln p3

ln p2

Ln p4

Log Linear Models

•  This change allows us to write the probability
density function as:

ln potential values

exp(X) = eX

Logical statements, either 1 or 0
Also known as indicator functions
For example,
f1 = a ˄ b
f2 = ¬a ˄ b

Weight Learning

l  Maximize likelihood or posterior probability
l  Numerical optimization (gradient or 2nd order)
l  No local maxima

l  Requires inference at each step (slow!)

No. of times feature i is true in data

Expected no. times feature i is true according to model

[])()()(log xnExnxP
w iwiw
i

−=
∂

∂

Example: Ising Model

Analyzing

•  In this formulation, the w’s are just weights and
the f’s are just features

•  As such, we can throw the graph out if we want –
we have everything we need in the wis and fis

•  In this view, parameter learning is just weight
learning

Statistical Relational Learning
(SRL)

•  For the most part, up until now, we have
assumed feature vectors as our data
representation

•  In many cases, a database model is more likely
•  Limitations of ILP

•  ILP that learned rules was somewhat robust
to noise, but still used a closed world model

•  There is little that is unconditionally true in the
real world

•  SRL addresses these limitations

Markov Logic

•  Allows one to make statements that are usually
true

•  Example:

Attach weights to each rule. The probability of a
setting that violates a rule drops off
exponentially with the weight of a rule

weight

0

Markov Logic, continued

•  All variables, need not be universally quantified,
but we assume so for here to ease notation

•  Rules are mapped into a Markov Network
•  Syntactically we are dealing with predicate calculus

(in our example, constants are people)
•  Semantically, we are dealing with a joint probability

distribution over all facts (ground atomic formulas)
•  A world is a truth assignment: we have probabilities

for each world based on weight

Translating Markov Logic to a
Markov Net

•  Create ground instances through substitution
•  Create a node for each fact
•  Create an edge between nodes if both appear in

a ground instance

Example translated to Markov
Network

•  Facts:

•  Rules:
Friend(x,y) ∧ Smokes(x) ->

 Smokes(y)

friend(Joe,Mary)	

smokes(Mary)	
 smokes(Joe)	

friend(Mary,Joe)	

other facts,
like

cancer(Mary)

other facts,
like

cancer(Joe)

Computing weights

•  Consider the effect of this rule, called ◊ for
convenience:

weight
1.1

smokes(Mary) ¬smokes(Mary)

smokes(Joe) ¬smokes(Joe)

¬friends(Mary,Joe)

friends(Mary,Joe)

smokes(Joe) ¬smokes(Joe)

This is the only predicate that does not satisfy ◊
Thus, it is given value 1, while the others are
Given value exp(weight(◊))

e1.1 e1.1 e1.1 e1.1

e1.1 e1.1 e1.1 1

Markov Networks
l  Undirected graphical models

Cancer

Cough Asthma

Smoking

l  Potential functions defined over cliques
Smoking Cancer Ф(S,C)

False False 4.5

False True 4.5

True False 2.7

True True 4.5

∏Φ=
c

cc xZ
xP)(1)(

∑∏Φ=
x c

cc xZ)(

Markov Networks
l  Undirected graphical models

l  Log-linear model:

Weight of Feature i Feature i

⎩
⎨
⎧ ∨¬

=
otherwise0

CancerSmokingif1
)CancerSmoking,(1f

5.11 =w

Cancer

Cough Asthma

Smoking

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

i
ii xfw

Z
xP)(exp1)(

Pseudo-Likelihood

l  Likelihood of each variable given its
neighbors in the data

l  Does not require inference at each step
l  Consistent estimator
l  Widely used in vision, spatial statistics, etc.
l  But PL parameters may not work well for

long inference chains

∏≡
i

ii xneighborsxPxPL))(|()(

Structure Learning

l  Start with atomic features
l  Greedily conjoin features to improve score
l  Problem: Need to reestimate weights for

each new candidate
l  Approximation: Keep weights of previous

features constant

Generative Weight Learning

l  Maximize likelihood or posterior probability
l  Numerical optimization (gradient or 2nd order)
l  No local maxima

l  Requires inference at each step (slow!)

No. of times feature i is true in data

Expected no. times feature i is true according to model

[])()()(log xnExnxP
w iwiw
i

−=
∂

∂

Pseudo-Likelihood

l  Likelihood of each variable given its
neighbors in the data

l  Does not require inference at each step
l  Consistent estimator
l  Widely used in vision, spatial statistics, etc.
l  But PL parameters may not work well for

long inference chains

∏≡
i

ii xneighborsxPxPL))(|()(

Discriminative Weight Learning

l  Maximize conditional likelihood of query (y)
given evidence (x)

l  Approximate expected counts by counts in
MAP state of y given x	

No. of true groundings of clause i in data

Expected no. true groundings according to model

[]),(),()|(log yxnEyxnxyP
w iwiw
i

−=
∂

∂

Rule Induction
l  Given: Set of positive and negative examples of

some concept
l  Example: (x1, x2, … , xn, y)
l  y: concept (Boolean)
l  x1, x2, … , xn: attributes (assume Boolean)

l  Goal: Induce a set of rules that cover all positive
examples and no negative ones
l  Rule: xa ^ xb ^ … -> y (xa: Literal, i.e., xi or its negation)
l  Same as Definite clause: Body ⇒ Head
l  Rule r covers example x iff x satisfies body of r

l  Eval(r): Accuracy, info. gain, coverage, support, etc.

Learning a Single Rule

head ← y
body ← Ø
repeat
 for each literal x
 rx ← r with x added to body
 Eval(rx)
 body ← body ^ best x
until no x improves Eval(r)
return r

Learning a Set of Rules

R ← Ø
S ← examples
repeat
 learn a single rule r
 R ← R U { r }
 S ← S − positive examples covered by r
until S contains no positive examples
return R

First-Order Rule Induction
l  y and xi are now predicates with arguments

E.g.: y is Ancestor(x,y), xi is Parent(x,y)
l  Literals to add are predicates or their negations
l  Literal to add must include at least one variable

already appearing in rule
l  Adding a literal changes # groundings of rule

E.g.: Ancestor(x,z) ^ Parent(z,y) -> Ancestor(x,y)
l  Eval(r) must take this into account

E.g.: Multiply by # positive groundings of rule
 still covered after adding literal

